
Job Control Guide
 Job Control Guide

Schrödinger Software Release
2015-2
Schrödinger Press

Job Control Guide Copyright © 2015 Schrödinger, LLC. All rights reserved.

While care has been taken in the preparation of this publication, Schrödinger

assumes no responsibility for errors or omissions, or for damages resulting from

the use of the information contained herein.

Canvas, CombiGlide, ConfGen, Epik, Glide, Impact, Jaguar, Liaison, LigPrep,

Maestro, Phase, Prime, PrimeX, QikProp, QikFit, QikSim, QSite, SiteMap, Strike, and

WaterMap are trademarks of Schrödinger, LLC. Schrödinger, BioLuminate, and

MacroModel are registered trademarks of Schrödinger, LLC. MCPRO is a trademark

of William L. Jorgensen. DESMOND is a trademark of D. E. Shaw Research, LLC.

Desmond is used with the permission of D. E. Shaw Research. All rights reserved.

This publication may contain the trademarks of other companies.

Schrödinger software includes software and libraries provided by third parties. For

details of the copyrights, and terms and conditions associated with such included

third party software, use your browser to open third_party_legal.html, which is in

the docs folder of your Schrödinger software installation.

This publication may refer to other third party software not included in or with

Schrödinger software ("such other third party software"), and provide links to third

party Web sites ("linked sites"). References to such other third party software or

linked sites do not constitute an endorsement by Schrödinger, LLC or its affiliates.

Use of such other third party software and linked sites may be subject to third

party license agreements and fees. Schrödinger, LLC and its affiliates have no

responsibility or liability, directly or indirectly, for such other third party software

and linked sites, or for damage resulting from the use thereof. Any warranties that

we make regarding Schrödinger products and services do not apply to such other

third party software or linked sites, or to the interaction between, or

interoperability of, Schrödinger products and services and such other third party

software.

May 2015

Contents
Document Conventions .. v

Chapter 1: Introduction ... 1

1.1 Notes.. 2

Chapter 2: Running Jobs .. 3

2.1 The Job Life Cycle... 3

2.2 Running Jobs From Maestro... 5

2.2.1 Output Settings ... 6

2.2.2 Job Settings .. 6

2.2.2.1 Job Name.. 6

2.2.2.2 Host, Job Distribution, and Processors.. 8

2.2.2.3 Other Settings ... 9

2.3 Running Jobs From the Command Line ... 9

2.3.1 Running Scripts... 12

2.3.2 The HOST, DRIVERHOST, and SUBHOST Options .. 13

2.3.3 The WAIT option ... 14

2.3.4 The LOCAL Option ... 14

2.3.5 Location of the Hosts File ... 15

2.4 Location of the Scratch Directory .. 15

2.5 Software Version Selection ... 17

2.6 License File Location.. 17

2.7 Environment Variables ... 17

2.8 Input and Output Files .. 18

2.9 Incorporation of Job Output.. 19

Chapter 3: Managing Jobs ... 21

3.1 The Job Database.. 21

3.1.1 The Job Record .. 22

3.1.2 Job Status ... 23
Job Control Guide iii

Contents

iv
3.2 Managing Jobs From Maestro .. 25

3.2.1 The Jobs Table.. 26

3.2.2 The Details Tab ... 27

3.2.3 The File Tab .. 28

3.3 Managing Jobs From the Command Line... 28

3.3.1 General Job Control Queries .. 29

3.3.2 Recovering Stranded Jobs.. 30

3.3.3 Using jserver ... 30

3.3.4 Purging the Job Database .. 31

3.3.5 Performing Actions on Jobs with jnanny ... 31

Appendix A: The postmortem Utility.. 33

Appendix B: Environment Variables .. 37

Appendix C: Secure File Transfer to Queue Hosts 43

C.1 Controlling Secure File Transfer ... 43

C.2 Altering Secure Zone Settings .. 44

C.3 Verifying Secure Transfer ... 44

Getting Help ... 47

Glossary .. 51

Index .. 53
Schrödinger Software Release 2015-2

Document Conventions
In addition to the use of italics for names of documents, the font conventions that are used in
this document are summarized in the table below.

Links to other locations in the current document or to other PDF documents are colored like
this: Document Conventions.

In descriptions of command syntax, the following UNIX conventions are used: braces { }

enclose a choice of required items, square brackets [] enclose optional items, and the bar
symbol | separates items in a list from which one item must be chosen. Lines of command
syntax that wrap should be interpreted as a single command.

File name, path, and environment variable syntax is generally given with the UNIX conven-
tions. To obtain the Windows conventions, replace the forward slash / with the backslash \ in
path or directory names, and replace the $ at the beginning of an environment variable with a %
at each end. For example, $SCHRODINGER/maestro becomes %SCHRODINGER%\maestro.

Keyboard references are given in the Windows convention by default, with Mac equivalents in
parentheses, for example CTRL+H (H). Where Mac equivalents are not given, COMMAND
should be read in place of CTRL. The convention CTRL-H is not used.

In this document, to type text means to type the required text in the specified location, and to
enter text means to type the required text, then press the ENTER key.

References to literature sources are given in square brackets, like this: [10].

Font Example Use

Sans serif Project Table Names of GUI features, such as panels, menus,
menu items, buttons, and labels

Monospace $SCHRODINGER/maestro File names, directory names, commands, envi-
ronment variables, command input and output

Italic filename Text that the user must replace with a value

Sans serif
uppercase

CTRL+H Keyboard keys
Job Control Guide v

vi
 Schrödinger Software Release 2015-2

Job Control Guide
Chapter 1
Chapter 1: Introduction
Nearly all computational jobs launched from Maestro are run under Schrödinger’s Job Control
facility. The Job Control facility provides a uniform mechanism for launching, monitoring and
controlling calculations, both for jobs launched from Maestro and for jobs launched from the
command line. The Job Control facility keeps information on jobs in a database that is set up
for each user.

The provision of a Job Control facility makes it easy to run Schrödinger software. You can
submit jobs from any computer to any computer or cluster, or to a batch queue, and have the
results returned to the computer from which you submitted the job. The process is independent
of the particular platform from which you submit the job or on which you run the job. The plat-
form details are hidden, but that also means that the details have to be communicated to Job
Control.

The setup and configuration tasks necessary for Job Control to work are described in Chapter 7
of the Installation Guide. In this manual, Chapter 2 describes the life cycle of a job and
provides information on submitting jobs and how the job execution is set up. Chapter 3
provides information on the job database and managing jobs.

Schrödinger software was originally designed to run on hosts that run some version of the
UNIX operating system (including Linux and vendor-specific implementations of UNIX). On
Linux, you can run jobs and Job Control commands from the command line. On Windows,
many of the programs and commands can be run directly from a Windows shell. Two shells are
provided with the installation that have the Schrödinger environment set up:

• Schrödinger Command Prompt—DOS shell.
• Schrödinger Power Shell—Windows Power Shell (if available).

You can open these shells from Start > All Programs > Schrodinger-2015. If you want access to
Unix-style utilities (such as awk, grep, and sed) or commands that are not available in these
shells, simply preface the commands with sh, or type sh in either of these shells to start a
Unix-style shell.
Job Control Guide 1

Chapter 1: Introduction

2

1.1 Notes

• Job Control changes made for Suite 2011 are not compatible with earlier releases. You
must ensure that the hosts file does not point to software installations for earlier releases,
and that the location of the job database is different from that for earlier releases (this is
the case by default, if you do not explicitly set the location of the job database).
Schrödinger Software Release 2015-2

Job Control Guide
Chapter 2
Chapter 2: Running Jobs
Jobs can be submitted to a designated host from a Maestro session or from the command line.
The details of setting up the data in Maestro or submitting jobs from the command line for a
given product are described in the documentation for the product. However, there are some
common elements that relate to the job submission and execution, and the incorporation of
results into a Maestro project. These common elements are described in two sections of this
chapter.

When you run a Schrödinger job on a particular host, Job Control determines where to find the
hosts file, which version of the software to use, which environment variables need to be passed
to the host, where the scratch directory is located, how to make the input files available to the
job, how to retrieve the output files, and how to incorporate them into a Maestro project. An
overview of this process is provided in the first section of this chapter. The remaining sections
provide details on how Job Control obtains information and sets up the runtime environment
for the job.

2.1 The Job Life Cycle

To understand how information is obtained and passed on by Job Control, it is useful to have
an understanding of how Schrödinger jobs are run. The “life cycle” of a job can be summarized
as follows.

1. A top-level script is run locally (on the submission host). This script parses command-line
arguments relating to Job Control and sets some environment variables.

2. The top-level script then runs the startup script for the program locally. This script parses
the command arguments for the program, and assembles information on input and output
files for the program.

3. The startup script then runs a job launch script locally, called jlaunch. This script
assigns a job ID, creates a record in the job database, and populates it with initial values.
It also verifies that the required input files exist.

4. If the job is to be run on a remote host, jlaunch starts a script locally, called jserver,
that sets up a socket connection to the remote host that can be used for file transfer. For
local jobs, jserver is also started, but it does not need to manage file transfer, only the
interaction with the job database.
Job Control Guide 3

Chapter 2: Running Jobs

4

5. The job launch script then runs a script on the execution host to start the actual program.
This script is called jmonitor. If the job is remote, it copies input files to the execution
host using the connection established by jserver, runs the program, and copies output
files back to the submission host. The program itself is responsible for checking in and
checking out licenses.

6. The job launch script takes care of cleanup and incorporation into a Maestro project, if
required, and updates the job record with the final status.

If you submit a job to a batch queue, there are some extra tasks that need to be performed. The
life cycle of a batch job is as follows.

1. A top-level script is run locally (on the submission host). This script parses command-line
arguments relating to Job Control and sets some environment variables.

2. The top-level script then runs the startup script for the program locally. This script parses
the command arguments for the program, and assembles information on input and output
files for the program.

3. The startup script then runs a job launch script locally, called jlaunch. This script cre-
ates a record in the job database and populates it with initial values. It also creates a batch
script for the job and submits this script to the queue.

4. The job launch script starts a script locally, called jserver, that sets up a connection to
the queue manager that can be used for file transfer. By default, this connection is an SSH
tunnel, but if secure transfer is not in effect, a socket connection is used. Another
jserver process is started on the queue manager (or other designated host) that sets up
connections to the compute nodes when the queued jobs are started. This process acts as a
proxy for the file transfer, and is done because it is not always possible to connect directly
from the submission host to the compute nodes. This instance of jserver is also known
as a jproxy process.

5. When the queued job is started on an execution host (a cluster node, for example), it runs
jmonitor. jmonitor then copies input files to the execution host, runs the program
(which checks out and checks in licenses), and copies output files back to the submission
host. The copying is done via the SSH tunnel or the sockets opened by jserver pro-
cesses on the manager node and the submission host. If the queue has license checking,
the queueing software checks for license availability. See Section 7.9 of the Installation
Guide for information on setting up license checking.

6. The job launch script takes care of cleanup and incorporation into a Maestro project, if
required, and updates the job record with the final status.

Jobs that are distributed over multiple processors usually have a script that manages the distri-
bution of subjobs to the individual processors. Each subjob is then executed by jmonitor.
Schrödinger Software Release 2015-2

Chapter 2: Running Jobs
2.2 Running Jobs From Maestro

To run a job from most Maestro panels, you use the Job toolbar.

You can start a job immediately by clicking Run. The job is run on the currently selected host
with the current job settings and the job name in the Job name text box. If you want to change
the job name, you can edit it in the text box before starting the job. Details of the main job
settings are reported in the status bar, which is below the Job toolbar.

To make settings for the job, you can open the Job Settings dialog box by choosing Job
Settings from the Settings button menu.

The dialog box is usually named task – Job Settings, where task is a name related to the
product, job, or initiating panel. The controls available in the Job Settings dialog box vary
according to the job being run. (Some products and solutions have separate locations in which
job settings are made.)

When you start Maestro, the settings in the schrodinger.hosts file are used to determine the
available host-related options in the Job Settings dialog box. Maestro searches the following
directories for a schrodinger.hosts file, in the order given, and uses the first one that it
finds.

• The Maestro startup directory, which is the directory in which you started Maestro
(Linux) or the Schrodinger folder in your documents folder (Windows or Mac)

• The Schrödinger user resources directory, $HOME/.schrodinger (Linux or Mac) or
%USERPROFILE%\Schrodinger (Windows)

• The installation directory

From the command line you can always determine which schrodinger.hosts file is being
used by entering the following command in the Maestro startup directory:

[$SCHRODINGER/]program -HOSTS

where program is any Schrödinger executable. The options in the Job Settings dialog box are
passed on to Job Control.

The Job Settings dialog box can have two sections, Output and Job. The components available
in each section are described in the sections below. Some of the components are present in all
instances of this dialog box, others are only present in some instances. Examples of Job

Settings dialog boxes are shown in Figure 2.2.
Job Control Guide 5

Chapter 2: Running Jobs

6

Once you have finished making settings, you can click Run to start the job, or click OK to save
settings without starting the job. This allows you to make job settings before making calcula-
tion settings, for example. Settings are saved for each application, with a few panels that have
separate settings (MacroModel Start, PrimeX Calculate R Factors).

2.2.1 Output Settings

The item described below is present in most instances of the dialog box. Some instances have
custom features, which are described in the application documentation.

• Incorporate option menu—Choose whether the new entries are appended to the project
either individually or as an entry group, replace the existing entries, or are not incorpo-
rated into the project at all. See Section 2.9 on page 19 for more information on incorpo-
rating output.

The choice that you make from this menu is persistent for a given job type: the next time
you run a job of that type, the incorporation mode that you last used is the default mode.
The incorporation mode is stored as a preference by Maestro, so the choice persists
across Maestro sessions.

2.2.2 Job Settings

The Job section of the Job Settings dialog box contains tools for setting the job name, selecting
the host, distributing the work over multiple processors, and a few other settings.

2.2.2.1 Job Name

At the top of this section are the job name controls, which vary according to the application.

• Name text box—Enter a name for the computational job. This name is used as the first
part of the file name for the files created for the job, and also for the job directory if the
application creates a directory for the job in the current working directory. A default
name is assigned based on the job being run. Job names cannot contain spaces or non-
printing characters.

The initial name shown is a standard name for the application, which might include cal-
culation settings. A standard name that contains settings is updated when the settings
change. You can modify a standard name; if you do and it still retains some settings, the
name is updated if the settings change. You can also replace the entire job name.

When a standard name or modified standard name is used, the job name is made unique
by appending an integer. This is done by checking for job directories or files in the cur-
rent working directory. However, if you replace the job name to create a custom job
name, the name might no longer be unique, and it is not automatically made unique. In
that case, a warning is posted before any files are overwritten.
Schrödinger Software Release 2015-2

Chapter 2: Running Jobs
Figure 2.2. The Job Settings dialog box with various controls.
Job Control Guide 7

Chapter 2: Running Jobs

8

After a job is submitted, a new job name is automatically created for the next job from the
current job name, by appending an integer or incrementing the integer. This is done for custom
job names as well as standard or modified names.

2.2.2.2 Host, Job Distribution, and Processors

Below the job name settings are the host and job distribution settings. There are four main
groupings. Jobs that cannot be distributed usually only have a hosts option menu. Jobs that can
be divided into a specified number of independent subjobs and distributed over multiple hosts
have a text box for the number of subjobs, and a host list for the hosts. Jobs that can be run in
parallel or can only be distributed on a single host have a host option menu and a CPUs text
box. Jobs that can be run on GPUs have a GPGPU list as well as the host option menu.

As terminology has changed with the introduction of multi-core CPUs, in the descriptions
below, “processor” is taken to mean a single processing unit, such as a core.

• Host—Choose a host on which to run the job. This option menu displays all the hosts
defined in the hosts file, with the number of processors on the host in parentheses.

The host localhost means the host on which you are running Maestro. If you run a job
locally, Maestro automatically reduces the priority of the job so that it does not compete
with Maestro for resources. The exceptions are Hydrophobic/philic map jobs, and struc-
ture cleanup jobs. To change this behavior, set the SCHRODINGER_NICE environment
variable (see Table B.1 on page 37).

• CPUs or Total processors—Specify the number of processors to use for the job. The num-
ber of processors actually used may be limited by the number of licenses available for the
type of job, and for some jobs, the number of processors used might vary during the
course of the job.

• Distribute subjobs across—Choose an option for how to distribute each subjob for paral-
lel execution. These options apply to Jaguar jobs, which can use both MPI processes and
OMP threads for parallelization.

• CPUs—Specify only the number of processors to use. The number of MPI pro-
cesses and threads are determined automatically for some job types, while for oth-
ers, the subjobs are distributed over the processors, one per processor.

• MPI processes—Specify the number of MPI processes and the number of threads
per process to use, and the number of subjobs to run simultaneously. The total num-
ber of processors requested is the product of these three numbers, as each subjob
runs with the specified number of MPI processes and threads. When this option is
selected, text boxes for the numbers are displayed, and the total number of CPUs
that result from the values in the text boxes is reported to the right.
Schrödinger Software Release 2015-2

Chapter 2: Running Jobs
• Separate job into N subjobs—Specify the number of subjobs into which the job is split.
Some drivers optimize the number of subjobs, so the number actually used might not be
exactly the number given. For good load balancing, the number of subjobs should be at
least 3-4 times the number of processors over which the job is distributed. The number of
subjobs should not be smaller than the number of processors: if it is, it is reset to the total
number of processors. See Running Distributed Schrödinger Jobs for more information.

• Host list—Choose the hosts on which to run the jobs by selecting rows in the table, and
specify the number of processors to use for each host by editing the Use column. You can
select multiple hosts with shift-click and control-click. Only the selected hosts are used
for the job. You cannot mix queue hosts and non-queue hosts, and only one queue host
can be selected. The Processors column shows the number of processors available on
each host. The Total to use text box shows the total number of processors chosen. This
text box is noneditable, so you must use the table to specify the number of processors.

• Reset All—Reset the Host list table to the default values (use all processors on the local
host).

• Automatically select GPUs—If a host is selected from the Hosts option menu that has
GPU units available for use, this option becomes available. The Total processors text box
is relabeled Total GPUs, and the number of GPUs selected automatically can be specified
in this text box.

• GPU table—Choose the GPU units on which to run the job, by selecting the table rows.
Click to select, click again to deselect. The table is only populated when you choose a
host from the Host option menu that is identified as having GPU units available for use,
and is only available if you deselect Automatically select GPUs. The number of GPUs you
select is displayed in the Total GPUs text box, which is noneditable when selecting GPUs.

2.2.2.3 Other Settings

There are other settings that appear in some Job Settings dialog boxes:

• Scratch directory—Choose a directory to store temporary files.

• Entry title text box—Enter a title for the input structure file. The default is the entry title.

2.3 Running Jobs From the Command Line

For most purposes, you can start jobs from Maestro. You can also run or submit jobs from the
command line on Linux hosts or from a Schrödinger shell on Windows hosts (see below). The
Job Control facility recognizes a number of command-line options that can be used to control
the behavior of the job. These options are summarized in Table 2.1.
Job Control Guide 9

Chapter 2: Running Jobs

10
Table 2.1. Command options.

Option Description

-DISP policy Set the project incorporation policy for this job: ignore, append,
appendungrouped, workspace, or replace. Requires -PROJ, and
overrides SCHRODINGER_JOB_DISPOSITION. The policies are
described in Section 2.9 on page 19. Default: ignore.

-DRIVERHOST host For distributed jobs, specify the host on which to run the driver (“mas-
ter job”). Must specify a single host.

-HOST host
-HOST host:n
-HOST "host1:n1 host2 ..."

Run a job on the specified host or submit a job to the specified batch
queue. host is the value of a name entry in the hosts file or the actual
address of a host. To specify multiple hosts, supply a blank-separated
list in quotes. To specify the (maximum) number of subjobs to run on
a host, append a colon and the number of subjobs to the host name.
Default: run on the local host.

-NICE Run the job at reduced priority. On Linux, the program is run with
nice -19. On Windows, the program is run at “idle” priority. Over-
rides SCHRODINGER_NICE.

-NOLAUNCH Perform all the steps necessary for launching the job, but stop short of
actually launching it.

-NONICE Do not run the job at reduced priority.
Overrides SCHRODINGER_NICE.

-NOSTARTUP In the process of launching the job, stop short of executing the appli-
cation startup script. Mainly useful for debugging.

-PROJ projectname Assign the job to a Maestro project.
Overrides SCHRODINGER_PROJECT

-QARGS queue-args Pass arguments to the queue manager. These arguments are appended
to those specified by the qargs settings in the hosts file and the
SCHRODINGER_QUEUE_ARGS environment variable.

-SAVE Copy the archived contents of the job directory back to the submission
directory after the job finishes, as jobid-jobdir.zip.

-SUBHOST host
-SUBHOST host:n
-SUBHOST "host1:n1 host2
..."

For distributed jobs, specify the hosts on which the subjobs will run.
The syntax is the same as for -HOST.
Default: run subjobs on the hosts specified by -HOST.

-TMPDIR directory Specify the scratch directory for the job. The job directory is created
as a subdirectory of the scratch directory. Overrides any user setting
of SCHRODINGER_TMPDIR

-USER username Specify the user name to be used for remote jobs. Must be used with
-HOST. Default: use the same user name as on the submission host.
Schrödinger Software Release 2015-2

Chapter 2: Running Jobs
In addition to these options, the startup scripts for some programs support several other
options. These options are summarized in Table 2.2. You should check which options are
supported by entering the command

$SCHRODINGER/program -HELP

Command-line options always take precedence over the corresponding environment variable.
Some of the options from Table 2.1 and Table 2.2 are described in more detail below. You can
also obtain information for each program about the hosts you can use. These options are listed
in Table 2.3.

Table 2.2. Options supported by some programs

Option Description

-LOCAL Write temporary files in the submission directory instead of the
scratch directory. Input and output files are not copied.
Default: write temporary files in the scratch directory.

-NOJOBID Run the job outside of Job Control. If you use this option, you are
responsible for managing all the environment variables, file handling,
and checking done by Job Control.

-NOLOCAL Write temporary files in the scratch directory instead of the submis-
sion directory. Some programs and utilities write files locally when
run on the local host; this option can be used to force the use of the
scratch directory.

-WAIT Wait for the job to finish before executing another command. In a ter-
minal window, this means that the command prompt is not displayed
until the job finishes. In a script, it means that the next command is
not executed until the job finishes.
Default: return control to the shell immediately.

Table 2.3. Information options.

Option Description

-DEBUG
-DDEBUG

Show the details of operation of the top-level script.
Show the verbose details of operation of the top-level script.

-ENTRY Show the section of the schrodinger.hosts file that will be used
for this job.

-HELP Display command syntax for the application.

-HOSTS List the hosts that are available for calculations.
Job Control Guide 11

Chapter 2: Running Jobs

12
On Windows, you can run Unix (Linux) commands by opening a Schrödinger Command
Prompt window from the Start menu, then entering the sh command. The unxutils package
provides many of the commands available in a Unix shell.

2.3.1 Running Scripts

You can run scripts from the command line with the following command:

$SCHRODINGER/run scriptname [-FROM product] [-FIND|-FINDALL] [options]

This command runs a top-level script like those for Schrödinger products, which recognizes
the Job Control options listed in the tables above (except for Table 2.2) and sets up environ-
ment variables. The script name can be one of the scripts supplied with the distribution or
downloaded from the Script Center, or it can be one of your own scripts. The script will not run
under Job Control unless it has been set up to do so. Any options that are not recognized by the
top-level script are passed on to your script.

The run command looks for scripts in the following locations in the order given:

1. The current directory.

2. The directory defined by the MMSHARE_EXEC environment variable, which is set by the
run command to $SCHRODINGER/mmshare-vversion/bin/platform, where version is
the mmshare version. (You should not set this environment variable yourself.)

3. The directory defined by the SCHRODINGER_SCRIPTS environment variable.

4. The suite2015-2/scripts directory in your Schrödinger user resource area, which is
$HOME/.schrodinger on Linux and Mac and %APPDATA%\Schrodinger on Win-
dows. This is the directory used for all scripts that are downloaded for personal use from
the web site using the Update Scripts From Website panel in Maestro.

5. The directory $SCHRODINGER/mmshare-vversion/python/common.

6. The directory $SCHRODINGER/mmshare-vversion/python/scripts.

7. Your execution path, defined by the PATH environment variable.

The -FIND option displays the path used to find the script, telling you which of these directo-
ries would be used to run the script. The -FINDALL option displays the path to all of the
possible locations where the script could be found, in the order given in the list above. These
options are useful when you have several versions of a script and want to find out which one is
being used, or which versions you have available.

If you use the -FROM product option, the executable directory for the product that you specify,
$SCHRODINGER/product-vversion/bin/platform, replaces MMSHARE_EXEC in the hierarchy.
Schrödinger Software Release 2015-2

Chapter 2: Running Jobs
The run command is especially useful for scripts that make use of the Schrödinger libraries or
Python modules, for which the environment is set up when you use this command.

2.3.2 The HOST, DRIVERHOST, and SUBHOST Options

Jobs can be submitted to a remote host using the -HOST option to specify the remote host name.
This name must be the value of a name setting in the hosts file (a “host entry name”), or an
actual host name. For example:

$SCHRODINGER/bmin -HOST host jobname

For programs that can run a single job in parallel or distribute several jobs over a number of
processors, the -HOST option can be used to specify the list of hosts to be used. The host list is
a list of host entry names, separated by spaces. The list must be enclosed in quotes if there is
more than one host specified.

Each host entry name can also specify how many subjobs to run (at most), using the syntax:

host:subjobs

An example of a host list specification is:

-HOST "florence:2 glinda"

The first host in the list is the main host for the job, that is, the host on which the driver process
for the parallel or distributed job runs. The entire set of hosts is used for the subjobs, including
the first. Some products run the driver on the local host, regardless of the -HOST value.

For other products, the host on which the driver runs and the host on which the subjobs run can
be specified independently, with the -DRIVERHOST option and the -SUBHOST option. This is
useful when you want the driver to run locally, for example. You might want to do this when
running the subjobs on a cluster via a queueing system, so that the driver is not occupying a
node on the cluster. This is not necessary for Phase, which runs a subjob on the same host as
the driver, and ignores the driver host setting.

If you use either of these two options, the -HOST option serves as a fallback for the other
option. So if you use -SUBHOST, -HOST only specifies the location of the driver; if you use
–DRIVERHOST, -HOST only specifies the location of the subjobs. If you use both, -HOST is
ignored.

The relationship between these options can be understood in terms of how the driver host and
the subjob hosts are set. -HOST sets the driver host and the subjob hosts. -DRIVERHOST uncon-
ditionally sets the driver host (overriding -HOST), and -SUBHOST unconditionally sets the
subjob hosts (overriding -HOST). The default for anything that is not set is localhost. This
means that if you only set -DRIVERHOST, the entire job runs on the driver host.
Job Control Guide 13

Chapter 2: Running Jobs

14
Not all jobs use all of these settings. See Running Distributed Schrödinger Jobs for detailed
information.

If you specify a host name that is not a host entry name (e.g. an IP address or fully qualified
domain name), the settings for localhost in the hosts file are used for the job. You must
ensure that there is a software installation on the specified host at the same path as the installa-
tion on the local host that you used to start the job.

2.3.3 The WAIT option

All jobs are run in the background automatically, dissociated from the terminal session or
application from which they were launched. As a result, the job continues to run even if you
quit Maestro or the terminal session from which you launched the job. For command-line jobs,
this means that the UNIX command prompt is displayed immediately, without waiting for the
job to finish. This behavior is not always desirable, especially if you want to run the job in a
script, in which some subsequent action can be taken only after the job finishes. The
command-line option -WAIT can be used to prevent the shell from continuing to the next
command until after the job finishes. For example:

$SCHRODINGER/bmin -WAIT job_name

Even with this option, however, the calculation is placed in the background, so pressing
CTRL+C or CTRL+Z does not affect it. This option applies to jobs submitted to a batch queue
as well as jobs that are run directly.

When the job finishes, the return code for the job is set to the return code for the computational
program. Thus, if the program failed, the return code for the job indicates why it failed. The
return code is also available in the ExitCode field of the job record.

2.3.4 The LOCAL Option

For some applications, you can request temporary files to be written to the submission direc-
tory (the directory from which you submitted the job), instead of to the job directory, which is
a subdirectory of the scratch directory. This is done with the -LOCAL option. For example,

$SCHRODINGER/bmin -LOCAL jobname

Not every application supports this option. When it is supported, it may be used for both local
and remote jobs. If you run a remote job with the -LOCAL option, it is important to make sure
that the submission directory is accessible on the remote machine. This option also suppresses
the copying of input and output files.
Schrödinger Software Release 2015-2

Chapter 2: Running Jobs
For some utilities, temporary files are written in the submission directory if the job is run
locally. For these utilities, you can force the files to be written in the scratch directory with the
-NOLOCAL option.

2.3.5 Location of the Hosts File

When you start a job from the command line, one of the first tasks of Job Control is to locate a
hosts file. The hosts file used for a given job is the first one found in the following list:

• The file specified by the environment variable SCHRODINGER_HOSTS
• The schrodinger.hosts file in the current directory
• The schrodinger.hosts file in $HOME/.schrodinger (Linux/Mac) or
%USERPROFILE%\Schrodinger (Windows)

• The schrodinger.hosts file in the Schrödinger software installation

For MacroModel jobs the following locations are searched before the list given above:

1. A file specified by the command line argument -HOSTFILE.

2. The file jobname.hst in the startup directory on the submission host, where jobname is
the stem of the command file name for the current calculation (e.g., if the command file
were called cal_en1.com, this file would be called cal_en1.hst).

The information in the hosts file is then used to make default settings for the job, such as the
location of the scratch directory.

If the hosts file is specified by the environment variable SCHRODINGER_HOSTS, this file is also
used to locate the hosts for any subjobs.

2.4 Location of the Scratch Directory

Most jobs now run in a scratch directory by default, rather than in the directory from which the
job was started (the submission directory, also called the launch directory). When a job runs in
a scratch directory, a subdirectory is created in it for the job, named tmpdir/username/
unique_name. Here, tmpdir is the path to the scratch directory. The job name is usually used
for unique_name, but it can also have a sequence number or the job ID appended to it to make
the directory name unique. This subdirectory is called the job directory. Input files are copied
to the job directory, temporary files, log files, and output files are created in the job directory,
and the output and log files are copied back to the submission directory when the job finishes.

If you submit a job from Maestro, you may be able to choose the scratch directory in the Start
dialog box. Maestro reads all the tmpdir settings from the hosts file, and presents these in the
Scratch directory option menu.
Job Control Guide 15

Chapter 2: Running Jobs

16
For jobs submitted from the command line, there are a number of ways to specify the tmpdir
directory. Job Control uses the first specification found from the following list:

• The directory given on the command line with the -TMPDIR option. For example,

 $SCHRODINGER/bmin -TMPDIR /scr/mmod_tmp job_name

• The directory specified by the SCHRODINGER_TMPDIR environment variable, if this is set
on the submission host.

• The directory specified by the first tmpdir setting for the host entry in the hosts file.

For jobs run on a remote host, the following locations are considered after the ones listed above
if a scratch directory is not defined:

• The directory specified by the environment variable SCHRODINGER_TMPDIR on the remote
host.

• The directory specified by the environment variable TMPDIR on the remote host.

If no other specification for tmpdir is found, the directory $HOME/.schrodinger/tmp is used.
In this case, the username is not used to form the job directory name, since it would be redun-
dant. Temporary files can occupy a large amount of disk space, so you are strongly advised to
ensure that a suitable directory is defined on every host, preferably in the hosts file.

In all cases, tmpdir is created if it does not exist. If the file system on which tmpdir is to be
created does not exist, the job fails.

When the job finishes, the job directory is automatically removed, if the following conditions
are met:

• The output files were all successfully copied back to the submission directory.
• The directory did not exist before the job started.
• The -SAVE option was not used in the job submission.

Some programs allow you to force the storage of temporary files in the submission directory,
by using the -LOCAL option to the command for running the program—see Section 2.3.4 on
page 14.
Schrödinger Software Release 2015-2

Chapter 2: Running Jobs
2.5 Software Version Selection

When a job is started, the Job Control facility checks that the software installation specified for
the job exists and that the software (mmshare) version matches that on the submission host.

The software installation used on the execution host is determined by the following rules:

1. The installation specified by the schrodinger setting in the entry for the execution host
in the hosts file on the submission host is used, if it is defined. If the installation does not
exist on the execution host, the job fails.

2. The installation specified by the SCHRODINGER environment variable on the submission
host is used, if there is no schrodinger setting in the hosts file for the execution host.

Thus, all the information on the software location must be available on the submission host.
See Section 7.1 of the Installation Guide for information on setting up the hosts file.

If you submit a job to a batch queue, an additional check is done when the job starts, using the
information obtained on the submission host, which is passed on by Job Control. This is done
because Job Control can only check the availability of software on the queue manager when
the job is launched.

2.6 License File Location

When an executable starts or the queueing software checks the availability of licenses, the
following locations are searched, in order, for the license file; the first one found is used.

1. $SCHROD_LICENSE_FILE

2. $LM_LICENSE_FILE

3. $SCHRODINGER/license or $SCHRODINGER/license.txt.

4. On a Mac, /Library/Application Support/Schrodinger/license[.txt].

2.7 Environment Variables

Environment variables that can be used on the execution host can come from the following
sources:

• Environment variables set in the shell startup script (.bashrc, .cshrc, and so on)
• Environment variables set on the submission host when the job is launched.
• Environment variables set in the hosts file for the execution host or localhost.
Job Control Guide 17

Chapter 2: Running Jobs

18
The environment variables are passed to the job in the following order of precedence:

1. Settings in the host entry.

2. Settings in the user environment on the submission host.

3. Settings in the user environment on the execution host. These are used as a fallback if
those environment variables were not defined and exported with the job.

2.8 Input and Output Files

When you run a job from the command line you can specify input files in either of two ways:
using absolute paths or relative paths. The way Job Control treats these differs. The configura-
tion considerations for output files and for updates of the Job Control database are similar to
those for input files specified using absolute paths. The basic rules are as follows:

• Files specified using absolute paths. These are paths that begin with a forward slash (/)
such as /home/unohu/prime/1mcp.mae. Job Control first looks for the file on the exe-
cution host exactly as given. For instance, it would look for a file named /home/unohu/
prime/1mcp.mae on the execution host. If it finds the file, it does nothing more, and the
file on the execution host is used for input. If it does not find the file, it looks for a file of
that name on the submission host, and copies it to the job directory of the execution host.

If you specify an absolute path for a file on a remote host, you should check that this is
the file you intended to use. There is no guarantee that the file that appears at the speci-
fied location on the execution host is the same as or has the same contents as one that
appears at the specified location on the submission host; nor is there a requirement that a
file of this name be accessible on the submission host.

Specifying file names with absolute paths is useful if you have large files that you can
copy to the desired location before submitting the job. For example, you might want to
run several Glide docking jobs with the same grid. You could copy the grid files to the
desired location, then specify them with an absolute path. Copying large files prior to job
submission can help reduce network traffic, especially on clusters.

• Files specified using relative paths with ../—These files are copied from their locations
on the submission host to the job directory on the execution host. For example, the file
../prime/1mcp.mae is copied to jobdir/1mcp.mae.

• Files in the submission directory or its subdirectories—These files are copied with
their relative path to the job directory on the execution host. Any subdirectories are cre-
ated in the job directory. For example, 1mcp.mae is copied to jobdir/1mcp.mae, and
prime/1mcp.mae is copied to jobdir/prime/1mcp.mae.

Output files are copied back from the job directory to the submission directory.
Schrödinger Software Release 2015-2

Chapter 2: Running Jobs
2.9 Incorporation of Job Output

When Maestro project entries are used as input for jobs, the structure and property output can
be incorporated into the project. The output files are always copied back to the submission
directory: the incorporation options affect what is done in the Maestro project. You can specify
how you want the results to be incorporated in the Job Settings dialog box (see Section 2.2 on
page 5). To open the Job Settings dialog box, click the button in the panel used to set up the
job. The incorporation options and their effects are described below.

• Append new entries as a new group—New entries are added to the end of the entry list in
the project as an entry group. The group name is the name of the file from which the
entries originated, minus the extension. If there is only one entry, it is appended as an
individual entry, not as a group. This is the default for jobs submitted from Maestro. Cor-
responds to the command-line option -DISP append.

• Append new entries in place—Each new entry is added to the project immediately below
its source entry, i.e. the entry that was used as input for the job. If there is no source entry,
the new entry is added to the end of the entry list in the project as an individual entry.
Corresponds to the command-line option -DISP appendinplace.

• Append new entries individually—New entries are added to the end of the entry list in the
project as individual entries. Corresponds to the command-line option -DISP
appendungrouped.

• Replace existing entries—Incoming entries replace the existing entries from which they
originated. Matching of the incoming and original entries is done by entry ID. Corre-
sponds to the command-line option -DISP replace.

• Replace Workspace—The Workspace is replaced with the first structure from the output
file, but no project entries are created or modified. Corresponds to the command-line
option -DISP workspace.

• Do not incorporate—Structure and property data are not incorporated into the project.
You can import the results later using the Import panel. See Chapter 3 of the Maestro
User Manual for more information on importing structures. Corresponds to the com-
mand-line option -DISP ignore.

You can also specify a project and incorporation mode when you run jobs from the command
line, by using the -PROJ and -DISP options—see Table 2.1 on page 10. The default for -DISP
is ignore for jobs run from the command line, since the default for -PROJ is not to specify a
project. The ignore option for -DISP is the same as the Do not incorporate option in Maestro.
Job Control Guide 19

Chapter 2: Running Jobs

20
By default, incorporation of job output into the project takes place only from monitoring mode
in Maestro. If you are monitoring a job launched from the current project, and that job finishes
during the monitoring session, incorporation is immediate. If you are not in monitoring mode
when the job finishes, you must monitor the job in the Monitor panel to incorporate the results.
This applies also to jobs run from the command line and associated with a project: you must
monitor the job in the Monitor panel for incorporation to take place.

The default incorporation behavior can be changed in the Jobs tab of the Preferences panel
(see Section 14.13 of the Maestro User Manual). You can choose to have jobs incorporate
automatically, in which case jobs launched from the current project are incorporated as soon as
they finish and are ready for incorporation. This means that you will not be able to use Maestro
until the job has finished incorporating. You can also choose to receive a prompt for incorpora-
tion when a job is ready. If you chose not to incorporate the job at that time, you must monitor
the job to incorporate it, or use the Incorporate All button in the Monitor panel.

When a job is incorporated, by default the first structure in the job output is displayed in the
Workspace. For entries that are incorporated as an entry group, the entry list is scrolled to the
first of these entries. You can change this behavior to minimize disruption to your work by
setting a preference in the Jobs tab of the Preferences panel.

Incorporation can be undone. Undoing incorporation removes the new entries from the project
and restores the Workspace to the state it was in just before monitoring mode was entered.

Computational programs normally propagate entry names (as well as other properties) from
their input into their output structures. Where the relationship is one-to-many, as in a confor-
mational search, consecutive structures in the output file have identical entry names. If the job
is run with the “append” incorporation mode, the names are identical to that of the input entry.
If the entries do not have a name, they are assigned a name that is constructed from the job
name, with a “dot suffix.” Thus, the output of a job named ligand1 would be named
ligand1.1, ligand1.2, and so on. Note that the entry name is no longer used as a unique
identifier in the project: the entry ID is used instead.
Schrödinger Software Release 2015-2

Job Control Guide
Chapter 3
Chapter 3: Managing Jobs
The Job Control facility provides tools for monitoring and controlling the jobs that it runs.
These tools have both a graphical user interface in the Maestro Monitor panel and a command-
line interface in the jobcontrol command. The interface gets information from a job database
that is set up for each user, and uses this information to perform various tasks, like providing
job status and killing jobs.

You can monitor jobs that are run locally, run remotely, or run in a batch queue. Jobs submitted
to a grid computing manager cannot be monitored, because Job Control does not have informa-
tion from the grid manager. A script has been provided to obtain information on jobs running
on a United Devices grid. Certain kinds of subjobs cannot be monitored: if they are launched
from a master job that runs on a remote host, and the submission directory on the remote host
is not mounted on the local host, the information is unavailable.

The first section in this chapter describes the job database. Subsequent sections describe the
Monitor panel and the jobcontrol command. Use of the jobcontrol command is not
supported on Windows hosts.

3.1 The Job Database

Information about each job is kept in the user’s job database. The database contains a record
for each job. You can determine which jobs are in the database by using the Maestro Monitor

panel or the command-line jobcontrol utility.

By default, this database is kept in the directory $HOME/.schrodinger/.jobdb2 on Linux
and %LOCALAPPDATA%\Schrodinger\.jobdb2 on Windows. If you want to change the
location, you can set the environment variable SCHRODINGER_JOBDB2 to the desired location.
You should set this environment variable globally, in your .bashrc or .cshrc file on Linux,
and in your system properties on Windows, so that you are always using the same job database.
If you set this environment variable locally, Job Control will not be able to locate your jobs and
they might not finish. (See Appendix A of the Installation Guide for information on setting
environment variables on Windows.)

You must ensure that this database can be read and written by a job running on any host, either
by making the directory directly available on the host, or by ensuring that the host has access to
a host on which it is available by passwordless ssh. If a job does not have access to the data-
base, it will not be updated.
Job Control Guide 21

Chapter 3: Managing Jobs

22
Note: The job database format changed in Suite 2011, and is not compatible with previous
releases. You must not set the job database directory to a location used for releases
prior to Suite 2011.

3.1.1 The Job Record

Each job has a job record in the job database. The job record is a list of fields, one on each line,
each consisting of a field name and its value. Many of these fields contain information that is
only useful to the job control system, but a number may also be useful to users. Some of the
latter are listed in Table 3.1

Table 3.1. Fields used in the job record.

Field Name Meaning

BackendPid The PID for the program carrying out the calculation

Command The command used to start up the actual calculation

Dir The submission and output directory (on Host)

Envs Environment variable settings for the job

Errors Error messages from the job control system

ExitCode Exit code for the job. Usually reflects the exit code for the computational
program. See Table 3.2.

ExitStatus The reason the calculation stopped

Host The machine from which job was launched

InputFiles Files copied from the submission directory to the job directory at startup

JobDir The directory in which the job is run

JobHost The machine on which the job is run

JobId The job's JobId

JobPid The PID for the job’s jmonitor process, or the job’s jlaunch process
before jmonitor has started.

JobUser The user name under which the job is run

LaunchTime The time at which the job was submitted

LogFiles Monitoring files that grow throughout the job

MonitorFiles Files copied from the job directory to the output directory during monitor-
ing

MonitorInterval The interval in seconds between monitoring updates (0 if off)
Schrödinger Software Release 2015-2

Chapter 3: Managing Jobs
To list the complete database record for a job, enter the command:

$SCHRODINGER/jobcontrol -dump jobid

Common values of ExitCode for the job are given in Table 3.2. On Linux, exit codes with a
value greater than 128 are calculated by adding 128 to the signal number generated by the
executable: thus exit code 137 corresponds to signal 9 (the kill signal).

3.1.2 Job Status

Every job proceeds through a series of well-defined stages (see Section 2.1 on page 3). The
current stage of a job is displayed in the Status column of the Monitor panel. The Status of a
completed job indicates the conditions under which it stopped. The job status descriptors that
can appear in the Monitor panel are listed in Table 3.3. When program execution finishes, an
exit status is returned, and is displayed with the completed status and the incorporated status in
the Monitor panel. The exit status descriptors are listed in Table 3.4.

Name The job name

OutputFiles Files copied from the job directory to the output directory at exit

ParentJobId The JobId of the parent job, if this is a subjob

Processors The number of processors used for a parallel or distributed job

Program The program name

Project The project name

StartTime The time at which the calculation started running

Status The current job status

StatusTime The time at which Status was last updated

StopTime The time at which the calculation stopped

StructureMonitorFile The name of the monitoring file holding the molecular structure

StructureOutputFile The name of the file holding the final molecular structure

Summary Description of current job status

User The user name under which job was launched

Warnings Warning messages from the job or job control

Table 3.1. Fields used in the job record. (Continued)

Field Name Meaning
Job Control Guide 23

Chapter 3: Managing Jobs

24
Table 3.2. Common job exit codes

Exit code Meaning

0 Success

1 Failure, unspecified

15 Retriable licensing failure, such as inability to contact server

16 All licenses are in use

17 Fatal licensing failure, such as license does not exist

136 Floating-point error

137 Kill signal received

139 Segmentation fault

143 Termination signal received

Table 3.3. Job status descriptors in the Monitor panel.

Status Meaning

launched The job was submitted and assigned a JobId.

submitted The job is in a batch queue, waiting to be scheduled.

started The environment for the job is being set up.

running The program is running.

paused The program has temporarily been suspended.

exited The program has stopped and the job is being cleaned up.

completed The job has been cleaned up. This descriptor is followed by a colon and
the exit status (see Table 3.4).

incorporated The job results have been incorporated into a Maestro project.

stranded Job Control could not retrieve results or clean up the job.
Schrödinger Software Release 2015-2

Chapter 3: Managing Jobs
3.2 Managing Jobs From Maestro

You can manage jobs from the Monitor panel or from the command line. The common tasks
can be performed from the Monitor panel, but the full range of job control tasks is only avail-
able from the command line. A web interface is also available for monitoring job progress,
which can be started with jobcontrol -g.

To open the Monitor panel, do one of the following:

• Choose Applications → Monitor Jobs
• Choose Tasks→ Monitor Jobs
• Click the Jobs button on the status bar in the main window
• Click the Monitor button in the job status window that opens from the Job toolbar.
• Double-click a row in the job status window.

The Monitor panel opens automatically when a job starts if you have the preference set under
Jobs – Monitoring in the Preferences panel.

The Monitor panel provides an interface to the job database. The panel has a jobs table and two
tabs: Details, and File. Below the table is a row of action buttons. The table and the tabs are
described in the following subsections.

When a job is started, by default Maestro immediately goes into monitoring mode. If the pref-
erence is set, the Monitor panel opens, and the log file for the job is displayed in the text area of
the File tab. The display is updated as the log file changes. For some jobs, such as MacroModel
and Jaguar geometry optimizations, the Workspace is updated with each new geometry as it is
generated. You can choose whether to enter monitoring mode, whether to display the Monitor
panel, and set other job-related values in the Preferences panel—see Section 14.13 of the
Maestro User Manual.

Panels that do not have a Job toolbar, such as the Prime – Structure Prediction and Phase –

Develop Pharmacophore Model panels, have a button that indicates whether a job is running.

Table 3.4. Exit status descriptors in the Monitor panel.

Status Meaning

finished The program finished successfully.

stopped The program was stopped at an appropriate point at the user’s request.

killed The job was killed by someone (not necessarily the user).

died The program failed during execution.

fizzled The job failed before the program could be run.
Job Control Guide 25

Chapter 3: Managing Jobs

26
The icon rotates when the job is running, and stops rotating when the job has finished. For
these panels, the Monitor panel can be opened by clicking the button.

Most Maestro operations stop the monitoring of a job. You can resume or begin monitoring a
job at any time by selecting it from the list of jobs in the Monitor panel.

3.2.1 The Jobs Table

The Jobs table lists jobs started by the current user. The job information is taken from the job
database for the user and is updated periodically. The table is presented as a tree, in which the
subjobs of a job can be hidden or displayed by clicking on the “turner” for the job (and like-
wise if subjobs themselves have subjobs). You can select multiple rows in the table with the
usual shift-click and control-click actions. If you select multiple rows, the Details and File tabs
and the Monitor button are unavailable. You can apply an action to the selected jobs with the
other action buttons. You can sort the table rows by clicking the heading of the column whose
values you want to sort by. Subjobs are sorted in chronological order by default.

The table cells have tool tips that display the full content of the cell, except for the Status
column, where an informative message describing the meaning of the status is displayed, and
the Host column, where the host entry name from the hosts file is displayed.

All jobs started by a user can be monitored in the Monitor panel, regardless of whether they
were initiated from Maestro or from the command line. The class of jobs displayed can be
selected from the Show option menu: all jobs, active jobs, or jobs from the current project.

To monitor a job, select the table row and click Monitor, or double-click the table row. The table
row is highlighted in blue, and the File tab is placed on top with the log file displayed.

The Monitor panel allows jobs to be paused, resumed, or terminated using the Pause, Resume,
Stop, and Kill buttons. Clicking Kill terminates the selected computational job immediately. The
Stop button only affects MacroModel, Jaguar, and Desmond jobs, and is ignored by other jobs.
When a job is stopped, the program saves results from the current stage of execution and cleans
up before exiting. Pause and Resume can be used for all jobs.

If a job fails, a postmortem archive of the job can be created for sending to technical support,
by using the Postmortem button. The Create Postmortem dialog box opens, in which you can
choose whether to include the structures in the archive (Include structures), whether to auto-
matically modify path names in the files so they are unrecognizable (Automatically obfuscate

path names), and create the archive. For each selected job, an archive is created and written to
the current working directory on Linux or the Desktop on Windows. The archive is created
with the postmortem utility, which is described in Appendix A. If you are concerned about
sending confidential information, you can use this utility directly to control the content of the
archive. An information dialog box provides the names of the archive files, including the path.
Schrödinger Software Release 2015-2

Chapter 3: Managing Jobs
You can clean up the job database by clicking the Clean Up button. Jobs that are completed and
incorporated, or finished if they are not incorporatable, are removed from the database.

If you want to update the status of all running jobs, click Refresh.

To incorporate all completed jobs for the current project, click Incorporate All. Jobs that were
submitted with incorporation method set to Workspace are incorporated, but no structure is
displayed in the Workspace.

The frequency with which information on the currently monitored job is updated can be set
with a preference. You can open the Preferences panel at the Jobs - Monitoring tab by clicking
Preferences.

3.2.2 The Details Tab

The Details tab gives details of the job that is selected in the Jobs tab. The job information is
repeated in the Job Summary text area. The Files table lists all files associated with the job
except for the structure files. When you select a file in the table, the file is displayed in the File
tab. If you double-click a file, the File tab is displayed with the selected file. By default, the log
file is selected (or the first log file if there is more than one). Gray rows in the table mark files
that are not available for viewing. The job record for the job is the last file in the list. This file
shows details of the progress of the job and is useful for diagnosing errors.

Figure 3.1. The Monitor panel, showing the Details tab.
Job Control Guide 27

Chapter 3: Managing Jobs

28
3.2.3 The File Tab

The File tab displays the file that is selected in the Details tab. By default, this file is the log file
for the job (or the first log file if there is more than one). The display is updated at regular inter-
vals. When new text is added, the display scrolls to show any new text if the display is already
at the end of the file. If the display is not at the end of the file when text is added, the display
remains at the same location in the file, and you must scroll down to the end of the file to see
the new text.

3.3 Managing Jobs From the Command Line

The job control utility allows you to perform a number of job control tasks from the command
line. The syntax for job control utility commands is:

$SCHRODINGER/jobcontrol action [options] query

where action is the command for the action you want to perform, options qualifies the scope of
the command, and query defines the scope of the action performed by the command. For infor-
mation on the actions and options, run jobcontrol -h.

The optional query consists of one or more JobIds, job names, status codes or queries, or the
keywords all, active, or lastN. The default query is all active jobs (jobs that are not
finished), and is equivalent to using the keyword active. The keyword all means all jobs in
your job database. The keyword lastN means the N most recently submitted jobs; last is
equivalent to last1. The JobId is a unique identifier consisting of the name of the submission
host, a sequence number, and a hexadecimal timestamp, e.g., mirabelle-0-a1b2c3d4. The
job record fields and their meanings are listed in Table 3.1 on page 22.

The following examples illustrate different values of query.

• To list all active jobs, showing their JobIds, job names, current status and the machine on
which each is running, enter:

$SCHRODINGER/jobcontrol -list

• To list all the jobs in your job database that finished successfully, enter:

$SCHRODINGER/jobcontrol -list finished

• To list just the job whose JobId is serv01-0-a1b2c3d4, enter:

$SCHRODINGER/jobcontrol -list serv01-0-a1b2c3d4

• To list all jobs in your database with the job name myjob, enter:

$SCHRODINGER/jobcontrol -list myjob
Schrödinger Software Release 2015-2

Chapter 3: Managing Jobs
• To list all jobs in your database, enter:

$SCHRODINGER/jobcontrol -list all

• To list the 5 jobs most recently submitted, enter:

$SCHRODINGER/jobcontrol -list last5

You can also use the wildcard character ‘?’ to match a single unspecified character, or ‘*’ to
match zero or more unspecified characters. If you use either of these characters, you must
protect them to ensure that they are interpreted by the jobcontrol script and not the UNIX
shell. For example, you could enter either of the following commands to list all jobs whose job
names start with docklig

$SCHRODINGER/jobcontrol -list docklig*
$SCHRODINGER/jobcontrol -list 'docklig*'

3.3.1 General Job Control Queries

More general queries than those given above are also possible. Formally, a query consists of
one or more conditions, optionally separated by the Boolean operators AND, OR or NOT. If
the operators are omitted, OR is assumed. A condition takes the form <field><op><value>,
where <field> is one of the field names in the job record and <op> is one of the following:

= equals
!= is not equal to
=~ matches
!~ does not match

“Equals” means an exact match; “matches” means that <field> matches <value>, treated as a
regular expression.

The field names are listed in Table 3.1 on page 22. The fields most likely to be useful for
queries are Name, Program, Host, Dir, JobHost, JobDir, Project, Status, and ExitStatus. The
case of the field names is ignored, but the case of the <value> is significant. So,
Program=Jaguar is the same as program=Jaguar, but program=jaguar would fail. Paren-
theses can be used to group conditions, but these must also be protected if used on the Unix
command line.

For example, to list all QSite jobs in your database that either died or were killed, enter the
command:

$SCHRODINGER/jobcontrol -list program=QSite AND
\(died OR killed \)
Job Control Guide 29

Chapter 3: Managing Jobs

30
3.3.2 Recovering Stranded Jobs

Job Control periodically tries to re-establish contact with stranded jobs. It is also possible to re-
establish contact with the job manually, with the command:

$SCHRODINGER/jobcontrol -recover jobid

If this command fails, however, the job is cleaned up and the results are no longer available.

If you cannot recover a job you can remove the job record with the command:

$SCHRODINGER/jobcontrol -delete -force jobid

This command should only be used as a last resort, because it removes all job control informa-
tion for the given job. However, if the job is actually alive, its job record may eventually reap-
pear after using this command.

3.3.3 Using jserver

The jserver process on the submission host sets up and manages the connection to remote
hosts. Normally it is started automatically. If it has stopped, you can restart it on a UNIX
system with the following command:

$SCHRODINGER/utilities/jserver [-proxy] [action] [options]

For information on the actions and options, run jserver -h. The options only apply to newly
started jserver processes.

In addition to starting a new jserver process, the jserver command can be used to interact
with a currently running jserver process. If a new jserver process is started without the
–force action, it checks whether another jserver process is already running. If so, the new
process contacts the running process to determine which process has the latest version. If the
new process has a later version, it kills the old jserver process and replaces it; otherwise, the
new process exits.

A jserver process started with the -proxy option is referred to as a jproxy process. These
processes are used for batch jobs to mediate communications between the job and the
jserver process running on the launch host. A user can have at most one jserver process
and one jproxy process running on a given host.

If jserver stops running, the jobs it manages are not incorporated until jserver restarts.
Then the remote job can copy files back to the submission host. To check if jserver is
running, use the -info option. You can also kill jserver with the -kill option, and you can
kill jserver and start a new jserver with the -force option.

On Windows, jserver is automatically restarted when you start your computer.
Schrödinger Software Release 2015-2

Chapter 3: Managing Jobs
The jserver process writes to a log file named jserver.hostname.log in the job database
directory. You can limit the size of this file by setting the environment variable
SCHRODINGER_JSERVER_LOGSIZE—see Appendix B for details.

3.3.4 Purging the Job Database

If the job database is not purged, job records can accumulate and the job database directory can
become quite large over time. The jobcontrol utility can be used to purge the job database of
records for completed jobs. For example, the following command purges the entire database:

$SCHRODINGER/jobcontrol -delete all

This command only affects completed jobs: running jobs cannot be deleted unless -force is
supplied after -delete. However, you should be careful not to delete completed jobs whose
output you still intend to incorporate into a Maestro project.

The job database is periodically checked for jobs that have finished by a process called jnanny
(see Section 3.3.5 on page 31). If the job is older than a threshold time, its record is deleted
from the database. You can set this threshold time with jnanny or with the environment vari-
able SCHRODINGER_JOBDB_CLEANUP. The default time is 1 week; the minimum allowed time is
1 second, but a realistic minimum is 10 minutes. The default unit is seconds, but you can
specify a time in minutes, hours, or days by appending m, h, or d to the value, for example, 7d,
168h, or 5m.

3.3.5 Performing Actions on Jobs with jnanny

The jnanny script scans the job database and performs tasks defined by plugin modules.
These tasks include checking for jobs that are stranded or appear to be stuck in a particular
state, and then initiating a recovery process and updating the job database. This script is run
periodically by jserver. The interval at which an action is performed can be defined by
setting an environment variable or using the -set option—see Table 3.5. The default unit is
seconds, but you can specify a time in minutes, hours, or days by appending m, h, or d to the
value.

Since jnanny is run periodically, it should not in general be necessary to run it manually.
However, you can do so if the need arises, with the following command:

$SCHRODINGER/utilities/jnanny [options] [plugins]

For information on the options and plugins, run jnanny -h. If no plugins are specified, all
plugins are called. You can abbreviate a plugin specification to the shortest unique string.
Job Control Guide 31

Chapter 3: Managing Jobs

32
Table 3.5. Settings and environment variables for jnanny actions.

Parameter Description

 CheckStranded module settings

stranded_threshold An active job whose job record has not been updated for this length of
time is checked to verify that it is still running.
Default: 10m. Minimum: 1m. 0 disables checking.
Environment variable: SCHRODINGER_STRANDED_THRESHOLD

stranded_interval Interval at which jnanny checks for stranded jobs.
Default: 10m. Minimum: 20s
Environment variable: SCHRODINGER_STRANDED_INTERVAL

death_threshold An active job that is unreachable for this length of time is marked dead.
Default: 2h. Minimum: 10m. 0 means infinite time.
Environment variable: SCHRODINGER_DEATH_THRESHOLD

CleanupDatabase module settings

jobdb_cleanup A completed job that is not part of an active distributed job is deleted
from the job database after this length of time.
Default: 7d. 0 turns off subsequent cleanup after cleaning up.
Environment variable: SCHRODINGER_JOBDB_CLEANUP

forced_cleanup All jobs that have been in the database longer than this length of time are
deleted from the job database, regardless of status.
Default: 2 months. 0 turns off subsequent cleanup.
Environment variable: SCHRODINGER_FORCED_CLEANUP

jobdb_maxsize If there are more than this many jobs in the job database, completed jobs
that are not part of an active distributed job are cleaned up to lower the
number of jobs below this limit.
Default: 2000. Minimum: 0.
Environment variable: SCHRODINGER_JOBDB_MAXSIZE

logfile_cleanup Remove a rotated jserver or jproxy log file that is older than this value.
Default: 30d. Minimum: 1m.
Environment variable: SCHRODINGER_LOGFILE_CLEANUP

CheckSubmitted module settings

submitted_interval Interval at which jnanny checks for stranded jobs that are submitted.
Default: 10m. Minimum:1m.
Environment variable: SCHRODINGER_SUBMITTED_INTERVAL

submitted_threshold A submitted job that has not started running after this length of time is
checked to make sure it is still on the queue.
Default: 5m; Minimum: 1m
Environment variable: SCHRODINGER_SUBMITTED_THRESHOLD
Schrödinger Software Release 2015-2

Job Control Guide
Appendix A
Appendix A: The postmortem Utility
The postmortem utility archives information that is useful for understanding why jobs do not
run as expected. It creates a zip archive containing the current environment, file system infor-
mation, a list of installed Schrodinger software packages, the schrodinger.hosts file, the
queue support scripts, the license file, and information such as input and output for specified
jobs. When contacting technical support regarding a job, it is highly recommended to run this
utility, and upload the archive when you fill in the support request form on the web site (https:/
/www.schrodinger.com/supportcenter/). It is also highly recommended that you generate this
archive using the Diagnostics panel, which runs the postmortem utility and creates the archive
with other information as well.

Note: You should ensure that no sensitive information is added to the archive, by using the
options described below, and by inspecting the contents of the archive.

The syntax of the postmortem utility is as follows:

$SCHRODINGER/utilities/postmortem [options] [jobids]

The options are described in Table A.1. Options may be truncated to any unique abbreviation.

Table A.1. Options for the postmortem command.

Option Description

-autoreplace Automatically replace strings that may contain sensitive information.

-exclude suff Do not include files with the given suffix in the archive.

-help Show the usage message.

-[no]alljobs Include information on all jobs in the archive. Default: include information
on specified jobs only.

-[no]parents Include [exclude] parent jobs of the specified jobs. Default: include.

-[no]subjobs Include [exclude] subjobs of the specified jobs. Default: include

-[no]jobfiles Include [exclude] input, output and log files. Default: include.

-[no]datafiles Include [exclude] data files. Default: exclude.

-output name The base name of the archive: the archive is named name.zip. The default
is username-host-schrodinger.zip if no job IDs are given, and jobid1-
archive.zip if job IDs are given, with jobid1 the first job ID.
Job Control Guide 33

https://www.schrodinger.com/supportcenter/
https://www.schrodinger.com/supportcenter/

Appendix A: The postmortem Utility

34
If job IDs are specified, the job records for those jobs are archived, along with any related files
(batch scripts, qlog files, and so on) from the job database. Parent and subjobs of the specified
jobs are included as well, unless the option -noparents or -nosubjobs is given. Finally,
unless -nojobfiles is given, any log files and non-structural input or output files listed in the
job record are saved as well. If you want to include structure files in the output, use the
–struct option.

The archive can be quite large if all job files for a large job are included. You might want to use
the -size option to check the total size of the files to be archived, first.

To find the job IDs for your jobs, use the jobcontrol command, or look in the Monitor panel.

For example the following command lists all of your completed jobs:

$SCHRODINGER/jobcontrol -list completed

If file and directory names contain sensitive information that you don’t want to reveal, you can
use the -autoreplace option to have the program replace them in the archived files. You can
specify particular string replacements using the -replace option, as well. A list of all string
replacements that were done is written to a file called archive.names.

You can change the default behavior of postmortem by setting preferences. This allows you
to run the postmortem command without any arguments and archive your preferred choice of
information. These preferences are stored in your Schrödinger user resources directory, and are
managed using postmortem command options. The preference names and values are given in
Table A.2. Unlike options, preference names must not be abbreviated.

-pref name[=value] Set preferences for the default behavior of postmortem. The allowed names
and values, with the defaults, are given in Table A.2. If the value is omitted,
display the current value of the preference.

-prefs List the currently defined preferences.

-quiet Do not print anything on standard output.

-replace string Replace the given string in the archived files.

-reset [name] Reset the specified preference to its default value. If name is not given, reset
all preferences to their default values.

-size Calculate the total size of the job files and exit; do not create an archive.

-[no]structures Include [exclude] structure files. Default: exclude.

-verbose List the names of the archived files on standard output.

Table A.1. Options for the postmortem command.

Option Description
Schrödinger Software Release 2015-2

Appendix A: The postmortem Utility
• To set preferences, use the -pref option:

postmortem -pref structures=1
postmortem -pref parents=0

• To see what preferences are currently in force, use the -prefs option,

postmortem -prefs

• To see the value for a particular preference, use -pref without asigning a value:

postmortem -pref verbose

• To remove a preference, use the -reset option, for example

postmortem -reset verbose

• To remove all preferences, use -reset without specifying a preference name:

postmortem -reset

Table A.2. Preferences for the postmortem utility, with the corresponding option

Preference Option Values Default

location -location String defining directory Current directory

jobfiles -[no]jobfiles 1|0 1 (-jobfiles)

alljobs -[no]alljobs 1|0 0 (-noalljobs)

structures -[no]structures 1|0 0 (-nostructures)

datafiles -[no]datafiles 1|0 0 (-nodatafiles)

parents -[no]parents 1|0 1 (-parents)

subjobs -[no]subjobs 1|0 1 (-subjobs)

verbose -verbose 1|0 1 (-verbose)
Job Control Guide 35

36
 Schrödinger Software Release 2015-2

Job Control Guide
Appendix B
Appendix B: Environment Variables
There are a number of environment variables that can be used to specify the location of
resources, manage the job database, and control various aspects of job execution. These envi-
ronment variables are given in Table B.1. Some of these environment variables provide alter-
nate means of specifying the resource; others are the sole means of specifying a resource or of
overriding a default value. For information on setting environment variables, see Appendix A
of the Installation Guide.

Table B.1. Environment variables for resource specification and job control.

Variable Purpose

SCHROD_LICENSE_FILE
LM_LICENSE_FILE

Specify the license file or a list of license files to use if
the license file is not installed in $SCHRODINGER. The
list must be separated by colons on Unix and semicolons
on Windows. The SCHROD_LICENSE_FILE definition
supersedes any other definition. Both of these environ-
ment variables are FlexLM environment variables.
Use SCHROD_LICENSE_FILE when LM_LICENSE_FILE
does not point to a license file containing Schrödinger
licenses.

SCHRODINGER Specify the installation directory.

SCHRODINGER_AUTO_SAVE If set to 1, force the contents of the job directory to be
archived and copied back to the submission host only for
those jobs that have died (whose exit status is “died”). It
is also possible to force such copying for all jobs (see
SCHRODINGER_SAVE_JOBDIR).

SCHRODINGER_DEATH_THRESHOLD Time threshold after which an active but unreachable job
is considered dead.

SCHRODINGER_HOSTS Specify the hosts file. See Section 2.3.5 on page 15.

SCHRODINGER_JOB_DEBUG Control debugging output. Allowed values are:
0 No debugging output
1 Standard debugging output (same as entering

-DEBUG from the command line)
2 Detailed debugging output (same as entering

-DDEBUG from the command line)
Job Control Guide 37

Appendix B: Environment Variables

38
SCHRODINGER_JOB_DISPOSITION Specify how to incorporate job results into the project
(same as entering -DISP from the command line)
Available values are:
append—add entries to project in an entry group
appendungrouped—add entries to project singly
replace—replace project entries with new entries
ignore—do not incorporate entries
Default: ignore
See Section 2.9 on page 19.

SCHRODINGER_JOBDB2 Specify the full path name for the job database. Must not
be set to a location that contains a pre-2011 job database.
Note that SCHRODINGER_JOBDB is no longer supported,
and will be ignored.
Default: ~/.schrodinger/.jobdb2
See Section 3.1 on page 21.

SCHRODINGER_JOBDB_CLEANUP Specify how long the job record of a completed job is
kept in the job database before being automatically
deleted. For example, one day can be expressed as
86400, 1440m, 24h, or 1d. A value of 0 turns off auto-
matic cleanup. The value is overridden by any jnanny
setting, so you should use jnanny instead if possible.
Default: 7 days.
See Section 3.3.4 and Section 3.3.5 on page 31.

SCHRODINGER_JOBDB_MAXSIZE Specify the maximum number of job records to be kept
in the job database. If this number is exceeded, job
records of completed jobs are purged, starting with the
oldest, at the next cleanup time.
Default: 2000 records.

SCHRODINGER_JMONITOR_PORT Specify the port or range of ports that jmonitor may
use. Ports can be specified as comma or colon-separated
lists without spaces. Ranges can specified with a dash,
for example, 5987:5989-5992:5994. Set this variable
if there is a firewall that allows connections to ports
within a given range only. The number of ports should be
twice the number of jmonitor processes (jobs).

SCHRODINGER_JPROXY Regulate the use of jproxy for the job. If set to 1,
jproxy is used; if set to 0, it is not. By default (if not
set), jproxy is used for batch jobs.

Table B.1. Environment variables for resource specification and job control. (Continued)

Variable Purpose
Schrödinger Software Release 2015-2

Appendix B: Environment Variables
SCHRODINGER_JPROXY_PORT Specify the port or range of ports that jproxy may use.
Overrides any setting of proxyport in the hosts file.
The syntax is the same as for
SCHRODINGER_JSERVER_PORT.
If this environment variable is not set, the values set in
SCHRODINGER_JSERVER_PORT apply to jproxy as
well. Therefore, it is generally not advisable to specify
only one port in SCHRODINGER_JSERVER_PORT, as this
will make it impossible for jserver and jproxy to run
on the same machine, which may be necessary.

SCHRODINGER_JSERVER Regulate the use of jserver for the job. If set to 1,
jserver is used; if set to 0, it is not. By default (if not
set), jserver is used for remote and batch jobs.

SCHRODINGER_JSERVER_LOGSIZE Set the size threshold for the jserver log file in bytes.
Units of kilobytes and megabytes can be used by append-
ing K or M to the value. The five most recent log files are
kept, with extensions .1 through .5. When the file size
exceeds this threshold, the files are rotated, the .log.5
file is discarded if it exists, and a new log file is started.

SCHRODINGER_JSERVER_PORT Specify the port or range of ports that jserver may use.
Ports can be specified as comma or colon-separated lists
without spaces. Ranges can specified with a dash, for
example, 5987:5989-5992:5994. Setting this variable
is useful if there is a firewall that allows connections to
ports within a given range only.

SCHRODINGER_LICENSE_DEBUG Turns on debugging related to license usage. Any non-
zero integer value turns on debugging.

SCHRODINGER_LICENSE_RETRY Specify the maximum time to keep trying to obtain a
license. The value can be an integer value in seconds, or
an integer value with a time unit, such as 7200s, 120m,
2h. An attempt to obtain a license is made at intervals that
double after each try, starting at 10s. The final attempt is
made at the specified maximum time.
Default: 1 minute.

SCHRODINGER_LOGFILE_CLEANUP Clean up (remove) jserver and jproxy log files that
are older than the specified age. The value can be an inte-
ger value in seconds, or an integer value with a time unit,
such as 7200s, 120m, 2h.
Default: 1 month.

Table B.1. Environment variables for resource specification and job control. (Continued)

Variable Purpose
Job Control Guide 39

Appendix B: Environment Variables

40
SCHRODINGER_MAX_RETRIES Specify the number of times a failed subjob from a dis-
tributed job is rerun before exiting with a failure. Only
supported for distributed Glide and workflow jobs.
Default: 3.

SCHRODINGER_MONITOR_INTERVAL Set the interval at which monitored files are copied back
to the launch directory.

SCHRODINGER_NICE Lower the priority of Schrödinger jobs. If it is unset or set
to a null string, the priority is not lowered. The value
local lowers the priority on jobs and subjobs submitted
to the local host, but does not lower the priority of jobs or
subjobs submitted to a remote host. Any other value low-
ers the priority of all jobs. By default, most jobs run on
the local host from Maestro are run with reduced priority.
To change this, set this variable to a null string.
Equivalent to using the -NICE command-line option.

SCHRODINGER_NO_NFS If set, avoid using NFS mounts for file transfers between
the job directory and the submission (output) directory, if
possible.

SCHRODINGER_NODEFILE Specify the path to a file containing a list of hosts and the
number of CPUs to use on each host. Each line in the file
must have the format:
host:numberofCPUs
You can list a host multiple times rather than provide the
number of CPUs; this may affect the execution of parallel
jobs.

This environment variable is used to pass an explicit list
of hosts to the driver for a parallel or distributed job. It is
not used by Job Control directly; as such, the meaning of
the file depends on the product that uses it. For a parallel
job, such as parallel Jaguar or Desmond, the names in the
file must be actual host names, not entries in the hosts
file. For distributed jobs, like Glide docking, the names
must be entries in the hosts file, since they are used for
launching subjobs.

Ordinarily, the hosts to use for a distributed or parallel
job would be supplied using command line arguments, as
explained elsewhere in this document. This variable is
provided to allow the usual mechanism to be overridden
when necessary.

Table B.1. Environment variables for resource specification and job control. (Continued)

Variable Purpose
Schrödinger Software Release 2015-2

Appendix B: Environment Variables
SCHRODINGER_PROJECT Specify the path name of the Maestro project into which
the results of the job should be incorporated
(same as entering -PROJ from the command line)
See Section 2.9 on page 19.

SCHRODINGER_QLOGDIR Specify the path to the directory where queue log files
(.qlog) for batch jobs are to be written. The default is
the job database directory; however, if that directory is
not mounted on the queue host, an alternative path needs
to be specified, or the queueing system will not be able to
write those log files.

SCHRODINGER_QUEUE_ARGS Specify queue arguments for job submission to a queue-
ing system. These arguments are also used when subjobs
are submitted by a master job. Queue arguments specified
with this environment variable are appended to those
read from schrodinger.hosts.

SCHRODINGER_RETAIN_JOBDIR If set to 1, when the job finishes and the output files are
copied back, the job directory is not removed. By default,
it is removed if it did not exist already.

SCHRODINGER_SAVE_JOBDIR If set to 1, archive the contents of the job directory and
copy it back to the submission host when the job finishes.
The archive appears in the output directory as jobid-job-
dir.zip. It is also possible to force such copying only for
jobs that have died (see SCHRODINGER_AUTO_SAVE).
Equivalent to using the -SAVE command-line option.

SCHRODINGER_SECURE_TRANSFERS Enforce or cancel data transfer via ssh tunnels. If set to
1, secure transfers are used regardless of any secure zone
settings in the hosts file. If set to 0, secure transfers are
not used at all. If unset, secure transfers are used for
transfers outside the secure zones defined in the hosts
file.

SCHRODINGER_STRANDED_INTERVAL Time interval for checking for stranded jobs by jnanny.
Default: 10 minutes.

SCHRODINGER_STRANDED_THRESHOLD Check whether an active job is still running if its job
record has not been updated for this length of time.
Default: 10 minutes.

SCHRODINGER_SUBMITTED_INTERVAL Time interval for checking on submitted and launched
jobs by jnanny to ensure that they are progressing.
Default: 10 minutes.

Table B.1. Environment variables for resource specification and job control. (Continued)

Variable Purpose
Job Control Guide 41

Appendix B: Environment Variables

42
SCHRODINGER_SUBMITTED_THRESHOLD Check whether a submitted job is still in the queue if its
job record has not been updated for this length of time.
Default: 5 minutes.

SCHRODINGER_TMPDIR Specify the full path name for the directory in which run
time temporary job directories are created. Overrides the
tmpdir setting specified in the schrodinger.hosts
file (Section 7.1.3 of the Installation Guide).

Table B.1. Environment variables for resource specification and job control. (Continued)

Variable Purpose
Schrödinger Software Release 2015-2

Job Control Guide
Appendix C
Appendix C: Secure File Transfer to Queue Hosts
All file transfers made to and from queue hosts for jobs submitted to a batch queue are secured
by default, so that sensitive information can be transmitted across insecure networks. The core
of the secure transfer mechanism is an SSH tunnel (“secure channel”) established between
jserver on the launch host and jproxy on the queue manager host. The SSH tunnel is estab-
lished in the background, automatically, in a transparent manner, and is removed when it is no
longer needed. This ensures that all data transfers between the launch host and the computing
cluster are encrypted. Communication between the queue manager host and compute nodes is
not secured, as the main goal of the secure file transfer mechanism is to protect information as
it enters and leaves the queue host.

Simple remote jobs from one host to another, which do not involve a batch queue, are never
secured by the secure transfer mechanism.

The most common use case for a secure transfer channel involves a workstation that communi-
cates with the head node of a cluster or the Cloud via the internet. In this case, it is not desir-
able to transfer data in plain text, since it would be exposed over the internet. It is common for
head nodes in such situations to employ firewalls that block all incoming connections except
for SSH. The secure transfer mechanism is well suited for both of these concerns.

If the connection between the job submission host and the queue host is already secure (for
example, part of a secure network), there is no need for the secure file transfer mechanism. In
this situation secure transfers can be disabled altogether or within specified secure zones.

C.1 Controlling Secure File Transfer

Secure file transfers can be disabled between a specific set of hosts by defining secure zones in
the hosts file. See Section 7.1.10 of the Installation Guide for information on defining these
zones.

While it is possible for a host to be in more than one secure zone, hosts never act as bridges
between different zones. For example, if one zone includes host1 and host2 and another one
includes host2 and host3, then connections between host2 and host1 or host3 are not secured,
but connections between host1 and host3 are secured because they do not belong to the same
secure zone. The file transfers do not take place via host2, so it does not act as a bridge
between the two secure zones.
Job Control Guide 43

Appendix C: Secure File Transfer to Queue Hosts

44
Secure file transfers can be turned on and off globally by setting the environment variable
SCHRODINGER_SECURE_TRANSFERS. A value of 0 turns off secure file transfers, and a value
of 1 turns on secure file transfers to all queue hosts. This setting takes precedence over all other
settings, including secure zones. Secure zones are used only if this variable is undefined.

The active secure zone information is stored in the job database directory, in the same format
as in the hosts file:

~/.schrodinger/.jobdb2/securezones.host

C.2 Altering Secure Zone Settings

Since secure zones are interpreted and used by jserver, which is shared between all of the
jobs that you launched from a given host, you cannot change the secure zone configuration
while jserver is active. If you do, jobs launched after such a change fail with an error
message: “Conflicting secure zones information”. If you do need to change the secure zone
configuration, you must kill your current jserver, with the command

$SCHRODINGER/utilities/jserver -clean

and then make changes to the securezone entries of your hosts file before launching any
subsequent jobs. If the hosts file is on a network file system, all jserver processes that have
access to that file system must be killed.

The same applies to the SCHRODINGER_SECURE_TRANSFERS environment variable. If you
need to change its value (including undefining it if it was defined previously), you must kill
jserver before launching any further jobs.

C.3 Verifying Secure Transfer

To verify whether connections between a jserver process and one or more of jproxy
processes are secure, use the command

$SCHRODINGER/utilities/jserver -show jproxys

The output should be something like the following:

Found jserver (PID 1645) listening on port 47129
monitoring 2 jproxy processes
untrustedhost [JPROXY_OK (secure)]
trustedhost [JPROXY_OK]

In this example, the connection between your host and untrustedhost is secured, while that
between your host and trustedhost is not.
Schrödinger Software Release 2015-2

Appendix C: Secure File Transfer to Queue Hosts
You can also use the Diagnostics GUI to determine whether or not jobs sent to a particular
entry in the hosts file is secured. In the GUI, select the desired host from the Hosts table, and
use Selected Host to run a test job. If the testapp result is OK (SECURE), then jobs sent to
that cluster entry will use the secure transfer mechanism.
Job Control Guide 45

46
 Schrödinger Software Release 2015-2

Schrödinger software Job Control Guide
Getting Help
Schrödinger software is distributed with documentation in PDF format. If the documentation is
not installed in $SCHRODINGER/docs on a computer that you have access to, you should
install it or ask your system administrator to install it.

For help installing and setting up licenses for Schrödinger software and installing documenta-
tion, see the Installation Guide. For information on a particular product, see the documentation
for that product. For information on using Maestro and its panels, see the Maestro online help
or the Maestro User Manual. Other information is available on the Schrödinger Support Center
and the knowledge base, http://www.schrodinger.com/kb.

Contacting Technical Support

If you have questions that are not answered from any of the above sources, contact Schrödinger
using the information below.

Web: http://www.schrodinger.com/supportcenter
E-mail: help@schrodinger.com
Mail: Schrödinger, 101 SW Main Street, Suite 1300, Portland, OR 97204
Phone: +1 888 891-4701 (USA, 8am – 8pm Eastern Time)

+49 621 438-55173 (Europe, 9am – 5pm Central European Time)
Fax: +1 503 299-4532 (USA, Portland office)
FTP: ftp://ftp.schrodinger.com

Generally, using the web form is best because you can add machine output and upload files, if
necessary. You will need to include the following information:

• All relevant user input and machine output
• Schrödinger software purchaser (company, research institution, or individual)
• Primary Schrödinger software user
• Installation, licensing, and machine information as described below.

Gathering Information for Technical Support

The instructions below describe how to gather the required machine, licensing, and installation
information, and any other job-related or failure-related information, to send to technical
support. Where the instructions depend on the profile used for Maestro, the profile is indicated.
Job Control Guide 47

https://www.schrodinger.com/SupportCenterMain.php?mID=8&sID=10&cID=0
http://www.schrodinger.com/supportcenter
mailto:help@schrodinger.com
http://www.schrodinger.com/kb

Getting Help

48
For general enquiries or problems:

1. Open the Diagnostics panel.

• Maestro: Help → Diagnostics
• Windows: Start → All Programs → Schrodinger-2015-2 → Diagnostics
• Mac: Applications → Schrodinger2015-2 → Diagnostics
• Command line: $SCHRODINGER/diagnostics

2. When the diagnostics have run, click Technical Support.

A dialog box opens, with instructions. You can highlight and copy the name of the file.

3. Upload the file specified in the dialog box to the support web form.

If you have already submitted a support request, use the upload link in the email response
from Schrödinger to upload the file. If you need to submit a new request, you can upload
the file when you fill in the form.

If your job failed:

1. Open the Monitor panel, using the instructions for your profile as given below:

• Maestro/Jaguar/Elements: Tasks → Monitor Jobs
• BioLuminate/MaterialsScience: Tasks → Job Monitor

2. Select the failed job in the table, and click Postmortem.

The Postmortem panel opens.

3. If your data is not sensitive and you can send it, select Include structures and deselect
Automatically obfuscate path names.

4. Click Create.

An archive file is created, and an information dialog box with the name and location of
the file opens. You can highlight and copy the name of the file.

5. Upload the file specified in the dialog box to the support web form.

If you have already submitted a support request, use the upload link in the email response
from Schrödinger to upload the file. If you need to submit a new request, you can upload
the file when you fill in the form.

6. Copy and paste any log messages from the window used to start the interface or the job
Schrödinger Software Release 2015-2

Getting Help
into the web form (or an e-mail message), or attach them as a file.

• Windows: Right-click in the window and choose Select All, then press ENTER to
copy the text.

• Mac: Start the Console application (Applications → Utilities), filter on the applica-
tion that you used to start the job (Maestro, BioLuminate, Elements), copy the text.

If Maestro failed:

1. Open the Diagnostics panel.

• Windows: Start → All Programs → Schrodinger-2015-2 → Diagnostics
• Mac: Applications → SchrodingerSuite2015-2 → Diagnostics
• Linux/command line: $SCHRODINGER/diagnostics

2. When the diagnostics have run, click Technical Support.

A dialog box opens, with instructions. You can highlight and copy the name of the file.

3. Upload the file specified in the dialog box to the support web form.

If you have already submitted a support request, use the upload link in the email response
from Schrödinger to upload the file. If you need to submit a new request, you can upload
the file when you fill in the form.

4. Upload the error files to the support web form.

The files should be in the following location:

• Windows: %LOCALAPPDATA%\Schrodinger\appcrash
(Choose Start → Run and paste this location into the Open text box.)
Attach maestro_error_pid.txt and maestro.exe_pid_timestamp.dmp.

• Mac: $HOME/Library/Logs/CrashReporter
(Go → Home → Library → Logs → CrashReporter)
Attach maestro_error_pid.txt and maestro_timestamp_machinename.crash.

• Linux: $HOME/.schrodinger/appcrash
Attach maestro_error_pid.txt and crash_report_timestamp_pid.txt.

If a Maestro panel failed to open:

1. Copy the text in the dialog box that opens.

2. Paste the text into the support web form.

Job Control Guide 49

50
 Schrödinger Software Release 2015-2

Job Control Guide
Glossary
entry—(1) A collection of settings in the hosts file that defines a configuration for running
jobs on a given host. There can be more than one entry for a given host, with different settings.
(2) A structure and its properties in a Maestro project.

execution host —The computer that a job runs on.

hosts file—The file that contains information on available hosts that is used by Job Control.
This file is usually named schrodinger.hosts.

job directory—The directory on the execution host to which the input files are copied from
the submission host and from which the output files back to the submission host when the job
is finished. This is usually a subdirectory of the scratch directory that is created by Job Control.

launch directory—The directory from which the job is started. Same as submission directory.

launch host—The computer that you submit a job from. Same as submission host.

local host—The computer that you are logged on to. Usually this is also the computer you are
using for job submission.

output directory—The directory to which output files are copied at the end of the job. This is
usually the same as the submission directory.

queue host—A computer that can run the queueing software. This is not necessarily the queue
manager: for example, if the queuing software is installed on an NFS-mounted file system, it
could be any host that has that file system.

remote host—A computer that is available to you over a network.

remote job submission—Submitting a job to a computer other than the one you are logged on
to or that you are running Maestro on.

Schrödinger user resource area—location for storage of resources (files, scripts, data) used
by Schrödinger software for an individual user. This location is $HOME/.schrodinger on
Linux and %APPDATA%\Schrodinger on Windows.

scratch directory—The directory that is used for temporary files. The files are usually created
in a subdirectory of this directory that is unique to the user and the job.
Job Control Guide 51

Glossary

52
submission directory—The directory from which the job is started. This is the directory from
which input files (specified without a path) are copied to the job directory, and to which output
files are copied at the end of the job.

submission host—The computer that you submit a job from.
Schrödinger Software Release 2015-2

Index
B
batch queues

passing arguments for................................. 10
queue log files... 41
software version.. 17

C
command options

information ... 11
job submission .. 10
parsing of .. 3, 4
program .. 11

conventions, document.. v

D
debugging

failed job output.. 37
license usage... 39

directories
installation .. 5
job ... 15
scratch... 15–16
submission .. 15

E
entries, project, incorporation of....................... 19
environment variables 37

jnanny action intervals.............................. 32
licensing.. 17, 37
order set .. 18
SCHRODINGER_HOSTS 15
SCHRODINGER_JOBDB_CLEANUP 31
SCHRODINGER_JOBDB2 21
SCHRODINGER_NICE 8
SCHRODINGER_SCRIPTS 12
SCHRODINGER_SECURE_TRANSFERS........ 44
SCHRODINGER_TMPDIR 16
table .. 37
TMPDIR ... 16

exit codes .. 24

F
field names, job record...................................... 22
files, displaying ... 27

H
hosts

listing .. 11
querying installation on.............................. 11
selecting for program execution 10
submission .. 3

hosts file
location of... 15
tmpdir setting ... 42
use by Maestro ... 5

I
incorporation of job results 19
input files .. 18
installation directory used by job...................... 17

J
jlaunch script ... 3, 4
jmonitor script ... 4
jnanny script ... 31
job database .. 21

cleanup time ... 32
creation of records in.................................... 3
location of... 38
maximum age of records 32
maximum size 32, 38

job directory.. 15, 51
archiving... 41
retention after job completion 41

job ID
assignment of.. 3
format ... 28

job record
description of fields 22
maximum age ... 38

Job Settings dialog box....................................... 7
jobcontrol utility 28–31

purging job database................................... 31
syntax ... 28

jobs
archiving failed... 33
cleaning up database................................... 31
database .. 21
distributing.. 9
incorporation options...................... 10, 19, 38
killing ... 26
Job Control Guide 53

54

Index
life cycle ... 3
listing .. 28
lowering priority of............................... 10, 40
monitoring .. 25
monitoring status keywords........................ 23
output incorporation 19
pausing and resuming................................. 26
record.. 22
remote submission 13
scratch directory 15–16
stranded .. 30
temporary files.. 14

jproxy process... 4, 30
jserver ... 30

function of .. 4
restarting ... 30

L
launch directory .. 15
licenses

checkin, checkout ... 4
error codes related to 24
location of license file 17, 37
time period for obtaining 39

log files, for queuing systems 41

M
Maestro project

assigning job to..................................... 10, 41
incorporation of job results............. 10, 19, 38

Monitor panel
Details tab... 27

monitoring jobs ... 25, 28

O
options, Job Control command-line.................... 9
output files .. 18

P
port range .. 38, 39
postmortem utility .. 33
priority of jobs .. 10, 40
processors, specifying number for execution 8, 13
product installation ... 47

Q
queue manager

passing arguments to 10
secure file transfer 43

R
remote hosts

querying installation on.............................. 11
selecting for program execution 10

S
Schrödinger contact information 47
scratch directory.. 15–16
scratch files—see temporary files
settings, hosts file

tmpdir ... 42
use by Maestro ... 5

sockets
use for file transfer 4

software version
selection for job .. 17

SSH tunnel, use for file transfer.......................... 4
Start dialog box... 5
subjobs

hosts for .. 15
retrying failed ... 40
specifying number of.................................... 9
unavailable for monitoring 21

submission directory... 15
submission host... 3

T
temporary files

location of....................................... 14, 15, 42
removal ... 16
writing to submission directory.................. 11

U
unxutils package ... 12
user name, specifying for job............................ 10

W
Windows, running from the command line 12
Schrödinger Software Release 2015-2

120 West 45th Street
17th Floor
New York, NY 10036

101 SW Main Street
Suite 1300
Portland, OR 97204

245 First Street
Riverview II, 18th Floor
Cambridge, MA 02142

8910 University Center Lane
Suite 270
San Diego, CA 92122

155 Gibbs St
Suite 430
Rockville, MD 20850-0353

Dynamostraße 13
D-68165 Mannheim
Germany

Zeppelinstraße 73
D-81669 München
Germany

Potsdamer Platz 11
D-10785 Berlin
Germany

Quatro House
Frimley Road
Camberley GU16 7ER
United Kingdom

8F Pacific Century Place
1-11-1 Marunouchi
Chiyoda-ku, Tokyo 100-6208
Japan

No. 102, 4th Block
3rd Main Road, 3rd Stage
Sharada Colony
Basaveshwaranagar
Bangalore 560079, India

SCHRÖDINGER ®

	Job Control Guide
	Contents
	Document Conventions
	Introduction
	1.1 Notes

	Running Jobs
	2.1 The Job Life Cycle
	2.2 Running Jobs From Maestro
	2.2.1 Output Settings
	2.2.2 Job Settings
	2.2.2.1 Job Name
	2.2.2.2 Host, Job Distribution, and Processors
	2.2.2.3 Other Settings

	2.3 Running Jobs From the Command Line
	2.3.1 Running Scripts
	2.3.2 The HOST, DRIVERHOST, and SUBHOST Options
	2.3.3 The WAIT option
	2.3.4 The LOCAL Option
	2.3.5 Location of the Hosts File

	2.4 Location of the Scratch Directory
	2.5 Software Version Selection
	2.6 License File Location
	2.7 Environment Variables
	2.8 Input and Output Files
	2.9 Incorporation of Job Output

	Managing Jobs
	3.1 The Job Database
	3.1.1 The Job Record
	3.1.2 Job Status

	3.2 Managing Jobs From Maestro
	3.2.1 The Jobs Table
	3.2.2 The Details Tab
	3.2.3 The File Tab

	3.3 Managing Jobs From the Command Line
	3.3.1 General Job Control Queries
	3.3.2 Recovering Stranded Jobs
	3.3.3 Using jserver
	3.3.4 Purging the Job Database
	3.3.5 Performing Actions on Jobs with jnanny

	The postmortem Utility
	Environment Variables
	Secure File Transfer to Queue Hosts
	C.1 Controlling Secure File Transfer
	C.2 Altering Secure Zone Settings
	C.3 Verifying Secure Transfer

	Getting Help
	Glossary
	Index

